Unit Testing [Serializable]

A common struggle with unit testing is figuring when to just assume somebody else’s code works. One such example is serializability: for simple classes, it should “just work” so we shouldn’t need to write a unit test for each of them. However, I still wanted to be able to verify that all classes in certain namespaces were marked as [Serializable], so I wrote the following test:

[TestCase(typeof(Money), "Solutionizing.Domain")]
[TestCase(typeof(App), "Solutionizing.Web.Models")]
public void Types_should_be_Serializable(Type sampleType, string @namespace)
{
    var assembly = sampleType.Assembly;

    var unserializableTypes = (
        from t in assembly.GetTypes()
        where t.Namespace != null && t.Namespace.StartsWith(@namespace, StringComparison.Ordinal)
        where !t.IsSerializable && ShouldBeSerializable(t)
        select t
        ).ToArray();

    unserializableTypes.ShouldBeEmpty();
}

After we have a reference to the Assembly under test, we use a LINQ to Objects query against its types. If a type matches our namespace filter, we make sure it’s serializable if it should be. Finally, by using ToArray() and ShouldBeEmpty() we’re given a nice error message if the test fails:

TestCase 'Solutionizing.Tests.SerializabilityTests.Types_should_be_Serializable(Solutionizing.Domain.Money, Solutionizing.Domain)'
failed:
 Expected: <empty>
 But was:  < <Solutionizing.Domain.Oops>, <Solutionizing.Domain.OopsAgain> >
 SerializabilityTests.cs(29,0): at Solutionizing.Tests.SerializabilityTests.Types_should_be_Serializable(Type sampleType, String namespace)

I use a few criteria to determine if I expect the type to be serializable:

private bool ShouldBeSerializable(Type t)
{
    if (IsExempt(t))
        return false;
    if (t.IsAbstract && t.IsSealed) // Static class
        return false;
    if (t.IsInterface)
        return false;
    if (!t.IsPublic)
        return false;

    return true;
}

Other than IsExempt(), the code should be more or less self-explanatory. If you had never bothered to check how static classes are represented in IL, now you know: abstract (can’t be instantiated) + sealed (can’t be inherited). Also, note that !IsPublic will cover compiler-generated classes for iterators and closures that we don’t need to serialize.

The final piece is providing a way we can exempt certain classes from being tested:

private bool IsExempt(Type t)
{
    return exemptTypes.Any(e => e.IsAssignableFrom(t));
}

private Type[] exemptTypes = new []
{
    typeof(SomeClassWithDictionary), // Wrapped dictionary is not serializable
    typeof(Attribute) // Metadata are never serialized
};

Of course, this isn’t a replacement for actually testing that custom serialization works correctly for more complicated objects, particularly if your classes may depend on others that aren’t covered by these tests. But I have still found this test to be a useful first level of protection.

About these ads

2 Responses to “Unit Testing [Serializable]”

  1. Jason Bock Says:

    This seems like a case where you’d want to use a static analysis rule, like FxCop/CodeAnalysis. This is a design rule. Unit testing this appears to be an odd fit :)

    • Keith Dahlby Says:

      Well it’s a design rule, but it’s also a functional requirement. And we’re not doing static analysis, so this works until we find do. :) Could you point me to an example of how this same kind of verification would be done with static analysis?


Comments are closed.

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: